Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells
نویسندگان
چکیده
Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although H2O2 (200 μM) increased intracellular ROS levels in human MSCs, lycopene (10 μM) pretreatment suppressed H2O2-induced ROS generation and increased survival. H2O2-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by H2O2 treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.
منابع مشابه
Evaluation of the brain tissue oxidative stress status during sepsis after mesenchymal stem cell\'s conditioned medium administration in male rats
Background: In the present study, we hypothesized that conditioned medium (CM) derived from mesenchymal stem cells attenuates the brain oxidative stress in sepsis induced by the cecal ligation and puncture (CLP) model. Methods: This study was performed in the Department of Physiology at Tehran University of Medical Sciences from August 2018 to April 2019. Conditioned medium was collected from ...
متن کاملAntioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells
Human mesenchymal stem cells (MSCs) may be used in cell-based therapy to promote neovascularization for the treatment of ischemic diseases. However, high levels of reactive oxygen species (ROS) derived from the pathophysiological ischemic environment induce senescence and apoptosis of MSCs, resulting in reduced functionality and defective neovascularization. Therefore, the present study aimed t...
متن کاملLycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways
Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)‑induced neuronal damage remains unclear. In the present study, pretreatment with lycopene ...
متن کاملMesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson\'s Disease
Background: Recent studies have shown that bone marrow mesenchymal stem cells (BMSCs) have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of granulocyte colony-stimulating factor (G-CSF) and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the...
متن کاملEffect of Human Mesenchymal Stem Cell-Conditioned Medium Injection on Oxidative Stress Induced by Carbon Tetrachloride in the Liver Tissue of Rats
Background: Carbon tetrachloride (CCI4) is used as a chemical intermediate in industries. It can be converted into toxic reactive products of trichloromethyl radical under the influence of cytochrome P450 enzymes, and cause tissue damage, including liver damage, through oxidative stress. Liver transplantation is an effective treatment for liver failure but is limited due to the shortage of orga...
متن کامل